# TOP 100+ Linear Equations Class 8 MCQ and Answers

Are you preparing for Linear Equations class 8 MCQ and answers and the next step is to score good marks in it, then you need to do a lot of practice. In this post, we are providing the questions with their answers on linear equations based on class 8 mathematics board exam questions.

## Linear Equations Class 8 MCQ and Answers

#### 1. The root of the equation 2x + 3 = 2(x – 4) is

(a) 2

(b) 4

(c) 0

(d) does not exist

(a) 10

(b) 2/5

(c) 5/2

(d) 1/10

(a) x + 2

(b) x + 1

(c) x

(d) x – 1

(a) x + 1

(b) x + 2

(c) 2x

(d) x – 1

(a) 95

(b) 40

(c) 73

(d) 59

#### 6. Jon is thrice as old as Kavya. Five years ago his age was two times Kavya’s age. Find their present age.

(a) Kavya’s age = 15 years; Jon’s age = 5 years

(b) Kavya’s age = 5 years; Jon’s age = 15 years

(c) Kavya’s age = 5 years; Jon’s age = 5 years

(d) Kavya’s age = 15 years; Jon’s age = 15 years

(a) 5

(b) 4

(c) 3

(d) 2

(a) 200

(b) 100

(c) 400

(d) 150

(a) 3x

(b) 12x

(c) 4x

(d) 3x

(a) 1

(b) 2

(c) 3

(d) 4

(a) 16

(b) 17

(c) 18

(d) 19

(a) 32 cm

(b) 32 m

(c) 23 m

(d) 23 cm

(a) 23 cm

(b) 12 cm

(c) 2 cm

(d) 8 cm

(a) x – 1

(b) x – 2

(c) x – 3

(d) x – 4.

(a) 21 + x

(b) 21 – x

(c) x – 21

(d) -x – 21.

(a) 10y + x

(b) 10x + y

(c) 10y – x

(d) 10x – y.

(a) 25

(b) 27

(c) 29

(d) 31.

(a) 1

(b) 2

(c) 3

(d) -3

(a) 1

(b) 2

(0 -1

(d) -2

(a) 2

(b) 8

(c) 6

(d) 10

(a) 1

(b) 2

(c) -1

(d) 1/2

(a) 54

(b) -54

(c) 18

(d) -18

(a) 2

(b) 4

(c) 6

(d) 8.

(a) 9

(b) 12

(c) 15

(d) 18

(a) 1

(b) 2

(c) 3

(d) 4.

(a) 1

(b) 2

(c) 3

(d) 4.

(a) 1

(b) 2

(c) 3

(d) 4.

(a) 1

(b) -1

(c) 12

(d) -12

(a) 1+t=0

(b) 1-t=0

(c) t+1=0

(d) t=0

(a) 2x+1=0

(b) 2x-1= 0

(c) 1 + 2x = 0

(d) 1 – 2x = 0

### Class 8 MCQs on Linear Equations and Answers

(a) 1

(b) 2

(c) 3

(d) 4

(a) 7

(b) 14

(c) 21

(d) -21

(a) 14 years

(b) 19 years

(c) 28 years

(d) 33 years

(a) 2000 rupees

(b) 200 rupees

(c) 1800 rupees

(d) 1400 years

(a) 43 rupees

(b) 34 rupees

(c) 23 rupees

(d) 32 rupees

(a) 5

(b) -5

(c) 3

(d) -3.

#### 37. The root of the equation

(2x – 1) + (x – 1) = x + 2 is

(a) 1

(b) 2

(c) -1

(d) -2.

#### 38. The root of the equation

13x – 14 = 9x + 10 is

(a) 1

(b) 2

(c) 3

(d) 6.

#### 39. The root of the equation

11x – 5 – x + 6 = 2x + 17 is

(a) 1

(b) 2

(c) 3

(d) 4.

(a) 1

(b) 2

(c) 3

(d) 4.

(a) 56 years

(b) 65 years

(c) 46 years

(d) 64 years

(a) 3 notes

(b) 4 notes

(c) 5 notes

(d) 6 notes

#### 43. Present ages of Anu and Raj are in the ratio 4:5. Eight years from now the ratio of their ages will be 5:6. Find their present ages.

(a) Raj’s age is 32 years and Anu’s age is 40 years

(b) Raj’s age is 40 years and Anu’s age is 48 years

(c) Raj’s age is 32 years and Anu’s age is 32 years

(d) Raj’s age is 40 years and Anu’s age is 32 years

(a) 40°

(b) 50°

(c) 90°

(d) 180°.

(a) 60°

(b) 90°

(c) 120°

(d) 180°.

(a) 6

(b) 9

(c) 12

(d) 18.

(a) 13, 10

(b) 14, 9

(c) 12, 11

(d) 15, 8.

#### 48. The standard form of a linear equation in one variable x is

(a) ax + b = 0

(b) ax² + bx + c = 0

(c) ax³ + bx² + cx + d = 0

(d) ax4 + bx³ + cx² + dx + e = 0.

(a) 1

(b) 2

(c) 0

(d) 3

(a) x – 10 = 20

(b) x + 10 = 20

(c) 10x = 20

(d) x/10 = 20.

(a) x + 9 = 25

(b) x – 9 = 25

(c) 9x = 25

(d) x/9 = 25.

(a) x + 15 = -5

(b) x – 15 = 5

(c) x + 15 = 5

(d) x – 15 = -5

(a) x + 7 = 42

(b) 7x = 42

(c) x/7 = 42

(d) x – 7 = 42.

(a) x – 5 = 6

(b) x + 5 = 6

(c) x/5 = 6

(d) 5x = 6.

(a) 40 – x = 15

(b) x – 40 = 15

(c) 40 + x = 15

(d) 40x = 15.

(a) 3x + 6 = 15

(b) 3x – 6 = 15

(c) 3x + 15 = 6

(d) 3x/6 = 15.

(a) 2x – 30 = 56

(b) 2x + 30 = 56

(c) 30 – 2x = 56

(d) 30/2x = 56.

(a) 3

(b) -32

(c) 12

(d) 4

#### 59. In equation 3x + 4 = 10, by transposing the variable on RHS we get ________

(a) -4 = 10 – 3x

(b) 4 = 3x + 10

(c) 4 = -3x + 10

(d) -4 = – 3x – 10

(a) x = 1

(b) x =-1

(c) x = 2

(d) x = -2

(a) 2z -2 = 3

(b) 3z -2 = -2

(c) 3z -3 = 3

(d) 4z + 3 = 3

(a) 2x = 3

(b) 3z = -6

(c) 4y – 3 = 2

(d) 2z – 2 = 2

(a) m = -5

(b) m = 5

(c) m = 6

(d) m = -6

(a) 12 m

(b) 192 m

(c) 13 m

(d) 14 m

(a) 20

(b) 54

(c) 0

(d) 14

(a) 120 cm

(b) 120 m

(c) 60 cm

(d) 60 m

#### 67. Sum of two distinct numbers is positive then which of the following statements is correct?

(a) Both numbers are equal and negative

(b) Greater one positive and smaller one negative

(c) Both positive

(d) Both negative

(a) 480

(b) 600

(c) 1200

(d) 720

(a) 2 cm

(b) 1 cm

(c) 4 cm

(d) 3 cm

(a) 1

(b) 2

(c) 3

(d) 4

#### 71. The process of shifting any constant or variable in an equation from one side to other is

(a) assosiativity

(b) distributivity

(c) commutativity

(d) transposition

#### 72. Linear equation in one variable has ________ number of solution/s.

(a) one

(b) one and only one

(c) two

(d) infinite

(a) 14 rupees

(b) 13 rupees

(c) 12 rupees

(d) 7 rupees

(a) 2 cm

(b) 3 cm

(c) 4 cm

(d) 5 cm

#### 75. At present Disha’s mother is three times the age of Disha. After 5 years their ages will sum up to 70 years. Find the present age.

(a) Disha 10 and her mother 30

(b) Disha 12 and her mother 36

(c) Disha 13 and her mother 39

(d) Disha 15 and her mother 45

#### 76. Bansal has 7 times as many two-rupee coins as he has five-rupee coins. If he has in all a sum of rupees 95, how many coins of each denomination does he have?

(a) 5 two-rupee and 2 five-rupee

(b) 15 two-rupee and 5 five-rupee

(c) 5 two-rupee and 15 five-rupee

(d) 15 two-rupee and 5 five-rupee

#### 77. The sum of three consecutive numbers is 789, what are those consecutive numbers?

(a) 262, 263 and 264

(b) 263, 264 and 265

(c) 264, 265 and 266

(d) 265, 266 and 267

(a) 2 and 3

(b) 1 and 4

(c) 0 and 5

(d) 2 and 4

(a) 7 cm

(b) 7 m

(c) 14 m

(d) 11 m

#### 80. Sum of consecutive multiples of 23 is 1656. Find the multiples.

(a) 529, 552, 575

(b) 629, 662, 675

(c) 189, 222, 275

(d) 389, 332, 375

(a) -24 and 28

(b) 24 and -28

(c) -24 and -28

(d) 24 and 28

(a) 70

(b) 71

(c) 72

(d) 73

## FAQs on Linear Equations

### Are linear equations always straight lines?

While all linear equations produce straight lines when graphed, not all linear equations produce linear functions. In order to be a linear function, a graph must be both linear (a straight line) and a function (matching each x-value to only one y-value).

### Are linear equations functions?

Yes, Most linear equations are functions.

### Are linear equations algebra?

A linear equation is an algebraic equation where each term has an exponent of 1 and when this equation is graphed, it always results in a straight line.

### Are linear equations polynomials?

A linear polynomial is a polynomial of degree one, i.e., the highestexponent of the variable is one, defined by an equation of the form: p(x): ax + b, a≠0. Given below are a few examples of linear polynomials: p(x): 2x + 3.

### Are linear equations proportional?

A linear equation is an equation that can be put in the form y = mx + b, where m is the slope of the line and b is the y-intercept. The graph of a linear equation is a line. If b = 0 in a linear equation (so y = mx), then the equation is a proportional linear relationship between y and x.

### Can linear equations have square roots?

A linear equation is a simple algebraic equation including one or two variables, at least two expressions and an equals sign. These are the most basic equations in algebra, as they never require work with exponents or square roots.

Categories: Uncategorized