Rate of a Chemical Reaction

1. The reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$ takes place in two steps. Find the rate law.
$2 \mathrm{NO}_{2} \rightarrow \mathrm{NO}+\mathrm{NO}_{3}\left(\mathrm{k}_{1}\right)$ - slow
$\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{NO}_{2}\left(\mathrm{k}_{2}\right)-$ fast
a) $R=k_{1}\left[\mathrm{NO}_{2}\right]^{3}$
b) $\mathrm{R}=\mathrm{k}_{2}\left[\mathrm{NO}_{3}\right][\mathrm{CO}]$
c) $\mathrm{R}=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]$
d) $R=k_{1}\left[\mathrm{NO}_{2}\right]^{2}$

Answer: $\mathrm{R}=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]^{2}$
2. For the reaction $A+\mathrm{H}_{2} \mathrm{O} \rightarrow$ products, find the rate of the reaction when $[A]=0.75 \mathrm{M}, k=0.02$.
a) $0.077 \mathrm{~s}^{-1}$
b) $0.085 \mathrm{~s}^{-1}$
c) $0.015 \mathrm{~s}^{-1}$
d) $0.026 \mathrm{~s}^{-1}$

Answer: $0.015 \mathrm{~s}^{-1}$
3. What is the rate law for acid hydrolysis of an ester such as $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ in aqueous solution?
a) $\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$
b) $\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$
c) $\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]^{2}$
d) k

Answer: $\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$
4. What is the concentration of the reactant in a first order reaction when the rate of the reaction is 0.6 s^{-1} and the rate constant is 0.035 ?
a) 26.667 M
b) 17.143 M
c) 26.183 M
d) 17.667 M

Answer: 17.143 M
5. How many times will the rate of the elementary reaction $3 X+Y \rightarrow X_{2} Y$ change if the concentration of the substance X is doubled and that of Y is halved?
a) $r_{2}=4.5 r_{1}$
b) $r_{2}=5 r_{1}$
c) $r_{2}=2 r_{1}$
d) $r_{2}=4 r_{1}$

Answer: $r_{2}=4 r_{1}$
6. What is the rate law for the reaction $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{I}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{I}_{2}$?
a) $\mathrm{R}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{I}_{2}\right]^{3 / 2}$
b) $\mathrm{R}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{I}_{2}\right]^{3}$
c) $\mathrm{R}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{I}_{2}\right]^{2}$
d) $\mathrm{R}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{I}_{2}\right]$

Answer: $\mathrm{R}=\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{I}_{2}\right]^{3 / 2}$
7. The rate law for the reaction involved in inversion of cane sugar is $R=k\left[C_{12} H_{22} \mathrm{O}_{11}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$.
a) True
b) False

Answer: False
8. For a second-order reaction, what is the unit of the rate of the reaction?
a) s^{-1}
b) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
c) $\mathrm{mol}^{-1} \mathrm{Ls}^{-1}$
d) $\mathrm{mol}^{-2} \mathrm{~L}^{2} \mathrm{~S}^{-1}$

Answer: $\mathrm{mol}^{-1} \mathrm{~L} \mathrm{~s}^{-1}$
9. The rate constant of a reaction is $k=3.28 \times 10^{-4} s^{-1}$. Find the order of the reaction.
a) Zero order
b) First order
c) Second order
d) Third order

Answer: First order

10. For a reaction $A+B \rightarrow C$, the experimental rate law is found to be $R=k[A]^{1}[B]^{1 / 2}$. Find the rate of the reaction when $[A]=0.5 \mathrm{M},[B]=0.1 \mathrm{M}$ and $k=0.03$.
a) $4.74 \times 10^{-2}(\mathrm{~L} / \mathrm{mol})^{1 / 2} \mathrm{~s}^{-1}$
b) $5.38 \times 10^{-2}(\mathrm{~L} / \mathrm{mol})^{1 / 2} \mathrm{~s}^{-1}$
c) $5.748 \times 10^{-2}(\mathrm{~L} / \mathrm{mol})^{1 / 2} \mathrm{~s}^{-1}$
d) $4.86 \times 10^{-2}(\mathrm{~L} / \mathrm{mol})^{1 / 2} \mathrm{~s}^{-1}$

Answer: $4.74 \times 10^{-2}(\mathrm{~L} / \mathrm{mol})^{1 / 2} \mathrm{~s}^{-1}$

